
Information Sciences 297 (2015) 80–94
Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier .com/locate / ins
2D Sine Logistic modulation map for image encryption
http://dx.doi.org/10.1016/j.ins.2014.11.018
0020-0255/� 2014 Elsevier Inc. All rights reserved.

⇑ Corresponding author. Tel.: +853 88228458; fax: +853 88222426.
E-mail address: yicongzhou@umac.mo (Y. Zhou).
Zhongyun Hua, Yicong Zhou ⇑, Chi-Man Pun, C.L. Philip Chen
Department of Computer and Information Science, University of Macau, Macau 999078, China

a r t i c l e i n f o
Article history:
Received 22 April 2014
Received in revised form 28 August 2014
Accepted 6 November 2014
Available online 15 November 2014

Keywords:
2D Sine Logistic modulation map
Chaotic magic transform
Image encryption
a b s t r a c t

Because of the excellent properties of unpredictability, ergodicity and sensitivity to their
parameters and initial values, chaotic maps are widely used in security applications. In this
paper, we introduce a new two-dimensional Sine Logistic modulation map (2D-SLMM)
which is derived from the Logistic and Sine maps. Compared with existing chaotic maps,
it has the wider chaotic range, better ergodicity, hyperchaotic property and relatively
low implementation cost. To investigate its applications, we propose a chaotic magic trans-
form (CMT) to efficiently change the image pixel positions. Combining 2D-SLMM with
CMT, we further introduce a new image encryption algorithm. Simulation results and secu-
rity analysis demonstrate that the proposed algorithm is able to protect images with low
time complexity and a high security level as well as to resist various attacks.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

As traditional dynamical systems, chaotic maps have the properties of unpredictability, ergodicity, and sensitivity to their
parameter(s) and initial value(s) [31]. They can generate different random sequences with different settings of parameters or
initial values. Thus chaotic maps attract many researchers’ attentions and have been widely used in different applications
[13,21,24,33,35]. Especially in security applications, chaotic maps show excellent performance. For example, a symmetric
image encryption scheme using the Arnold cat map was proposed by Zhu et al. [40], a symmetric image encryption algorithm
based on mixed linear-nonlinear coupled map lattice was proposed by Zhang and Wang [34], and a new 1D chaotic system
for image encryption was proposed by Zhou et al. [36].

Existing chaotic maps can be classified into two categories: one-dimensional (1D) chaotic maps and high-dimensional
(HD) chaotic maps. 1D chaotic maps usually contain one variable and a few parameters. Examples include the Logistic,
Gaussian, Sine and Tent maps [12]. Their structures and chaotic orbits are rather simple. With the development of chaotic
signal estimation technologies, when little information is extracted, their chaotic orbits may be estimated [2,17] and their
parameters or/and initial values may be predicted [28]. These weaknesses limit their applications in many security areas.
For example, when 1D chaotic maps are used in image encryption, several encryption algorithms were reported to be inse-
cure [2,20]. A Logistic map-based image encryption algorithm proposed in [23] was proved to be insecure [1,15]. On the
other hand, HD chaotic maps have at least two variables, e.g., the Hénon map [12], Lorenz system [26] and Chee-Lee system
[4]. Compared with 1D chaotic maps, HD chaotic maps usually have more complex structures and better chaotic perfor-
mance. These make their chaotic orbits much harder to predict. However, their hardware implementations are relatively
complex and expensive. Therefore, developing a chaotic map with excellent chaotic performance and a low implementation
cost becomes significative.
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This paper proposes a two-dimensional (2D) chaotic map, called the 2D Sine Logistic modulation map (2D-SLMM). It is
derived from two 1D chaotic maps, the Sine and Logistic maps. Performance analysis is provided to show that 2D-SLMM
has the wider chaotic range, better ergodicity and hyperchaotic properties than existing chaotic maps. To show its perfor-
mance in security applications, a chaotic magic transform (CMT) is introduced for image encryption. Using chaotic sequences
generated by 2D-SLMM, CMT is able to quickly shuffle image pixels in both the row and column directions at the same time.
Integrating 2D-SLMM and CMT, we also propose a new CMT-based image encryption algorithm (CMT-IEA). Experimental
results and security analysis are given to show that the proposed CMT-IEA can encrypt different types of digital images with
a high level of security and low time complexity.

The rest of this paper is organized as follows. Section 2 will introduce 2D-SLMM and analyze its chaotic behaviors. In Sec-
tion 3, CMT for image encryption will be introduced. Section 4 will propose CMT-IEA using 2D-SLMM and CMT. Section 5 will
provide simulation results and time complexity analysis. Section 6 will analyze the security issues of CMT-IEA and Section 7
will reach a conclusion.

2. 2D Sine Logistic modulation map

This section introduces the 2D Sine Logistic modulation map (2D-SLMM) and investigates its chaotic behaviors.

2.1. Mathematic definition

The Logistic and Sine maps are two commonly used 1D chaotic maps. They are defined by Eqs. (1) and (2), respectively.
xiþ1 ¼ axið1� xiÞ ð1Þ

xiþ1 ¼ u sinðpxiÞ ð2Þ
where a and u are parameters. a 2 ½0;4� and u 2 ½0;1�.
Both maps are nonlinear transforms to generate next iteration values with a simple structure. Thus, their orbits are easy

to be predicted using chaotic signal estimation technologies [2,17]. To address this problem, we propose 2D-SLMM. It is
defined by Eq. (3).
xiþ1 ¼ aðsinðpyiÞ þ bÞxið1� xiÞ
yiþ1 ¼ aðsinðpxiþ1Þ þ bÞyið1� yiÞ

�
ð3Þ
where a and b are control parameters. a 2 ½0;1� and b 2 ½0;3�.
2D-SLMM is derived from the Logistic and Sine maps. A combination of the Sine map and parameter b is used to modulate

the output of the Logistic map to enhance its nonlinearity and randomness. The result is then extended from one-dimension
to two-dimension to obtain 2D-SLMM. Two output values of 2D-SLMM xiþ1 and yiþ1 intertwine each other. Thus, its orbits
and iteration values are difficult to predict. When parameter b is close to 3, 2D-SLMM shows good chaotic performance.
For simplicity, we set b ¼ 3 in the rest of this paper.

2.2. Performance evaluation

The proposed 2D-SLMM has good chaotic behaviors. Here, we use the trajectory, Lyapunov exponent [18,19], Lyapunov
dimension [14] and Kolmogorov entropy [7] to evaluate its chaotic performance.

2.2.1. Trajectory
Fig. 1 compares the trajectories of 2D-SLMM with the 2D Logistic map defined in Eq. (4) [31]. Their parameters are set to

the values that ensure both maps to have excellent chaotic behaviors. Their initial values are set to the same. As can be seen,
the trajectory of 2D-SLMM distributes in much larger regions in the phase plane than that of the 2D Logistic map. This means
that 2D-SLMM is able to generate more random outputs and has much better ergodicity property.
xiþ1 ¼ rð3yi þ 1Þxið1� xiÞ
yiþ1 ¼ rð3xiþ1 þ 1Þyið1� yiÞ

�
ð4Þ
2.2.2. Lyapunov exponent and Lyapunov dimension
Chaotic behaviors of a dynamical system can be evaluated by the Lyapunov exponent (LE) and Lyapunov dimension (LD).

For two extremely close trajectories of a dynamical system in the phase plane, a positive LE value denotes that they expo-
nentially separate in each unit time and will be totally different over the time. A HD chaotic map has at least two LE values
and the maximum LE (MLE) value determines its predictability. It has chaotic behaviors when its MLE value is positive, and
has hyperchaotic behaviors when it has more than one positive LE values. A HD chaotic map with hyperchaotic behaviors
generally has high complexity and its trajectories are extremely difficult to predict. On the other hand, LD is a measure of
the geometric scaling properties of a dynamical system. It is a basic property to reflect a dynamical system’s complexity [14].



Fig. 1. Trajectories of (a) the proposed 2D-SLMM with parameters a ¼ 1;b ¼ 3 and (b) the 2D Logistic map with parameter r ¼ 1:19.
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In our experiments, we use the algorithms in [6,27] to calculate the LE and LD values. A 2D chaotic map usually has two LE
values. Fig. 2(a) and (b) plot two LE values, k1 and k2, of 2D-SLMM and the 2D Logistic map along with their parameter set-
tings. Fig. 2(c) plots their LD distributions where we shift parameter r of the 2D Logistic map to provide a better visual com-
parison. As can be seen from Fig. 2(a), when a 2 ½0:87;1� (approximately), 2D-SLMM has chaotic behaviors because its MLE
value k1 is positive, and when a 2 ½0:905;1� (approximately), 2D-SLMM has hyperchaotic behaviors because its two LE values
k1 and k2 are positive. Both values become bigger when a is close to 1. From Fig. 2(b), we can observe that the 2D Logistic
map has chaotic behaviors when its parameter r 2 ½1:11;1:15�

S
½1:18;1:19� (approximately), and it does not have hypercha-

otic behaviors. Comparing the LD values in Fig. 2(c), we can see that the LD values of 2D-SLMM are bigger than these of the
2D Logistic map. Therefore, 2D-SLMM has the wider chaotic range and more complex trajectories than the 2D Logistic map.
Its outputs are difficult to predict because of its hyperchaotic property.

2.2.3. Kolmogorov entropy
Kolmogorov entropy (KE) is a test to calculate how much extra information needs to forecast the trajectory of a dynamical

system in each unit time. A dynamical system with a positive KE value will be chaotic and a bigger positive KE value means
better unpredictability.

In our experiments, we use the method reported in [11] to calculate the KE values of four testing chaotic maps: 2D-SLMM,
the Logistic, Sine and 2D Logistic maps. 12,000 continuous points are selected from the trajectory of each chaotic map to
calculate their KE values. Fig. 3 plots their KE values along with their parameters a; a;u and r. To provide a better visual com-
parison, we linearly scale down parameter a of the Logistic map and shift parameter r of the 2D Logistic map into the range of
½0;1�. As can be seen in Fig. 3, 2D-SLMM has larger positive KE values than other chaotic maps in most of the parameter set-
tings. This means that the trajectory of 2D-SLMM has better unpredictability. For the chaos-based cryptographic systems,
their security performance is determined by the characteristics of chaotic maps. Thus, 2D-SLMM is more suitable for cryp-
tographic systems than the Logistic, Sine and 2D Logistic maps.
Fig. 2. The LE distributions of (a) 2D-SLMM (b ¼ 3), and (b) the 2D Logistic map; (c) the LD distributions of 2D-SLMM (b ¼ 3) and the 2D Logistic map.



Fig. 3. The KE values of 2D-SLMM, the Logistic, Sine and 2D Logistic maps.
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In summary, the iteration values ðxi; yiÞ of 2D-SLMM fall into most regions of its 2D phase plane. The evaluation and com-
parison results of LE, LD and KE show that 2D-SLMM has more complex chaotic behaviors and better unpredictability than
existing chaotic maps.

3. Chaotic magic transform

3.1. Definition

Digital images usually have high information redundancy because their neighboring pixels have high correlations. To
break these correlations, this section proposes a new chaotic magic transform (CMT) to randomly change image pixel
positions.

First, we generate a shuffled index matrix I. Let S be a 2D chaotic matrix with a size of M � N generated by 2D-SLMM, S be
a 2D matrix generated from S by sorting its data within each column. The shuffled index matrix I is defined by,
Iði; jÞ ¼ k for Sði; jÞ ¼ Sðk; jÞ ð5Þ
where i; j; k are integers, 1 6 i; k 6 M and 1 6 j 6 N
Let P be an original image with a size of M � N and T be the shuffled image. The chaotic magic transform (CMT) is defined

by,
T ¼ FðP; IÞ ð6Þ
where F is the CMT function as described in Algorithm 1. CMT is able to change pixel positions within the original image P
according to the chaotic matrix generated by 2D-SLMM. It randomly connects pixels in different rows and columns into cir-
cles, and then shift them within the circles.

Algorithm 1. The chaotic magic transform.

Input: the original image P and chaotic matrix S with the size of M � N
1: Sort each column of S to obtain the sorted matrix S;
2: Generate shuffled index matrix I using Eq. (5);
3: for i ¼ 1 to M do
4: Connect pixels in P with locations ðIi;1;1Þ; ðIi;2;2Þ; ðIi;3;3Þ; . . . ; ðIi;N;NÞ into a circle;
5: Shift these pixels i positions to the left;
6: end for

Output: The shuffled image T.



Fig. 4. An example of the generation of index matrix I.

Fig. 5. An example of the pixel shuffling processes in CMT.
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Figs. 4 and 5 show an illustrative example of CMT. Fig. 4 shows the generation of the index matrix I from a chaotic matrix
while Fig. 5 shows the pixel shuffling processes according to the index matrix I. As can be seen in Fig. 4, by sorting each col-
umn of chaotic matrix S with an ascending order, the sorted matrix S can be obtained. The index matrix I indicates the loca-
tions where the data in S are permutated from. For example, I1;1 ¼ 2 means that S1;1 is permuted from the location ð2;1Þ in S.
In Fig. 5, P is the original image matrix and T is the shuffled result of CMT. Because the index matrix I has four rows, the
shuffling processes can be divided into four steps as follows.

Step 1: For ð2;3;4;1Þ in the first row in I, we connect the pixels in red ðP2;1; P3;2; P4;3; P1;4Þ in matrix P, namely ð5;10;15;4Þ,
into a circle and shift them 1 pixel position to the left. After shifting, in the CMT result
T; T2;1 ¼ P3;2; T3;2 ¼ P4;3; T4;3 ¼ P1;4 and T1;4 ¼ P2;1, also see the red numbers in matrix T.

Step 2: For ð1;1;3;2Þ in the second row of I, we connect the pixels in blue ðP1;1; P1;2; P3;3; P2;4Þ in P, namely ð1;2;11;8Þ, into a
circle and shift them 2 pixel positions to the left. Then, T1;1 ¼ P3;3; T1;2 ¼ P2;4; T3;3 ¼ P1;1 and T2;4 ¼ P1;2, see the blue
numbers in T.

Step 3: For ð4;2;2;4Þ in the third row of I, we connect the pixels in purple ðP4;1; P2;2; P2;3; P4;4Þ in P, namely ð13;6;7;16Þ, into a
circle and shift them 3 pixel positions to the left. Thus, T4;1 ¼ P4;4; T2;2 ¼ P4;1; T2;3 ¼ P2;2; T4;4 ¼ P2;3, see the purple
numbers in T.

Step 4: For ð3;4;1;3Þ in the last row of I, we connect the pixels in black ðP3;1; P4;2; P1;3; P3;4Þ in P, namely ð9;14;3;12Þ, into a
circle and shift them 4 pixel positions to the left. The shifting results are T3;1 ¼ P3;1; T4;2 ¼ P4;2; T1;3 ¼ P1;3 and
T3;4 ¼ P3;4, see the black numbers in T.

After all shifting operations, we can obtain the CMT result T.
3.2. Discussion

Different from many image scrambling algorithms that perform pixel shuffling row by row and column by column, CMT
changes pixel positions simultaneously in both the horizontal and vertical directions based on the pseudo-random numbers
generated by the chaotic map. After applying CMT to an image only one time, a pixel may be permuted to any position within
an image. By this way, CMT can achieve the following advantages:

(1) A pixel can be quickly separated with its neighboring pixels.
(2) Without knowing the detailed conditions of the chaotic map, the CMT results are extremely difficult to predict, achiev-

ing a high level of security.
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4. New CMT-based image encryption algorithm

Existing image encryption methods can be classified into two categories. The first category treats a digital image as a bit
stream and applies data encryption algorithms for image encryption. These data encryption algorithms include the well-
known Digital Encryption Standard (DES) [9], Advanced Encryption Standard (AES) [8], Block cipher [5] and many others.
Because most of data encryption algorithms are stream/block ciphers and a digital image usually has a nature of high infor-
mation redundancy, using stream/block ciphers to encrypt a digital image may not reach a good encryption performance
[31]. The other category performs image encryption considering the special properties of digital images [21,37]. The algo-
rithms include chaos-based image encryption algorithms [10,35,36], wavelet transform-based image encryption algorithms
[3,22], recursive-sequence-based image encryption algorithms [38,39], and so on.

Among these image encryption technologies, chaos-based image encryption algorithms show excellent encryption per-
formance. Using the proposed 2D-SLMM and CMT, this section proposes a new CMT-based image encryption algorithm,
called CMT-IEA. It uses 2D-SLMM to generate pseudo-random sequences for CMT to change image pixel positions and for
pixel substitution to change image pixel values.

Algorithm 2. The proposed CMT-IEA.
Input: The security key K ¼ ðx0; y0;a;H;G1;G2Þ and the plaintext image P with the size of M � N.
1: Transform the binary sequences x0; y0;a;H into decimal numbers using Eq. (7) and G1;G2 into integers;
2: Obtain two groups of initial conditions ðx01; y01;a1Þ and ðx02; y02;a2Þ using Eq. (8);
3: Generate two chaotic matrices S1 and S2 (with the size of M � N) using 2D-SLMM with two groups of initial

conditions in Step 2;
4: for i ¼ 1 to 2 do
5: Apply CMT to the plaintext image P using the chaotic matrix Si;
6: Do row substitution to the image using chaotic matrix Si;
7: Do column substitution to the image using chaotic matrix Si;
8: end for

Output: The encrypted image C.
The flowchart of CMT-IEA is shown in Fig. 6. The plaintext image P is the original image and the ciphertext image C is the
encrypted image. The security key is used to produce initial values and parameters of 2D-SLMM. CMT is to achieve the con-
fusion property by randomly shuffling all pixel positions. The pixel substitution operations are to achieve the diffusion prop-
erty by randomly changing all pixel values. To obtain random-like encryption results while avoiding the cases that 2D-SLMM
Fig. 6. The flowchart of the proposed CMT-IEA.
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may lose its chaotic behaviors in some parameter settings, the proposed CMT-IEA uses two rounds of CMT and pixel substi-
tution operations. The decryption process simply reverses the encryption operations of CMT-IEA. A pseudo-code implemen-
tation of CMT-IEA is shown in Algorithm 2. The encryption process is represented by C ¼ EncðP;KÞ while the decryption
process is denoted as D ¼ DecðC;KÞ, where K is the security key.

Here, we show an example of CMT-IEA described in Algorithm 2. In this example, K ¼
ð0:9380;0:7006;0:4902;0:1318;1144200;12173572Þ, then two groups of initial conditions can be generated as
ð0:4980;0:2606;0:9502Þ and ð0:7276;0:4902;0:9798Þ. 2D-SLMM then generates two chaotic matrices as follows,
S1 ¼

1:4995 1:2021 0:8105 1:2058
1:2624 1:6507 1:4355 1:5654
1:1080 1:0024 1:1424 1:0177
1:5315 1:6962 1:4705 1:5193

0
BBB@

1
CCCA; S2 ¼

1:6693 1:4124 0:8790 1:5755
0:9398 1:3284 1:5478 0:9657
1:6721 1:5142 1:2438 1:4072
0:8877 0:8262 1:2074 1:5392

0
BBB@

1
CCCA
The results in each operation are shown in Fig. 7. As can be seen, P is the original image and after two rounds of CMT and
substitution with chaotic matrices S1 and S2, the encrypted result C can be obtained.

4.1. Generation of initial conditions

The security key of CMT-IEA is a sequence with a length of 256 bits. Its structure is shown in Fig. 8. It contains information
of initial values and parameters of 2D-SLMM and can be divided into 6 parts, x0; y0;a;H;G1, and G2. ðx0; y0Þ are initial values
and a is control parameter. H;G1 and G2 are designed to change the initial values and parameters to enlarge the security key
space.

x0; y0;a and H are decimal numbers which are generated by a 52-bit string fb1; b2; . . . ; b52g using the IEEE 754 format [25],
as shown in Eq. (7).
x ¼
P52

i¼1bi2
52�i

252 ð7Þ
G1 and G2 are two integer coefficients generated by a 24-bit string fb1; b2; . . . ; b24g. The initial values and control param-
eters of 2D-SLMM for generating two chaotic matrices are defined by Eq. (8)
x0i ¼ ðx0 þ GiHÞ mod 1
y0i ¼ ðy0 þ GiHÞ mod 1
ai ¼ 0:9þ ððaþ GiHÞ mod 0:1Þ

8><
>: ð8Þ
where the round number i is 1 or 2.
In Eq. (8), the generated initial values will fall into the range of ½0;1� and the control parameter a will be limited within

½0:9;1�. Thus, 2D-SLMM has good chaotic performance under these settings.
In the proposed CMT-IEA, users have the flexibility of manually selecting a binary sequence with 256 bits or randomly

generating a binary stream to produce the security key. In our simulations and comparisons, we randomly generate binary
Fig. 7. An example of the proposed CMT-IEA.



Fig. 8. The security key structure.
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streams with a length of 256 bits as the security keys that will be returned along with the encrypted results for image
decryption.

4.2. Pixel substitution

An encryption algorithm with a good diffusion property has the ability of resisting the chosen-plaintext attack. The dif-
fusion property indicates that encrypting two plaintexts with a tiny difference using the same security key will yield totally
different encryption results. To achieve the diffusion property, CMT-IEA performs pixel substitution in two steps: the row
substitution and column substitution.

Suppose the CMT result T and chaotic matrix S are both with a size of M � N. The mathematic definition of the pixel sub-
stitution is described in Eq. (9).
Fig. 9.
substitu
Ci ¼
ðTi þ TR þ bSi � 232cÞ mod F If i ¼ 1

ðTi þ Ci�1 þ bSi � 232cÞ mod F If i 2 ½2;R�

(
ð9Þ
where F is the number of allowed pixel values in the plaintext image. For example, F ¼ 256 if the image pixels are repre-
sented by 8-bit decimals. And b�c is the floor operation. When performing the row substitution, R ¼ N and Eq. (9) is used
for each row of T; When doing the column substitution, R ¼ M and Eq. (9) is used for each column of T.

Fig. 9 shows the results of directly applying pixel substitution only one time to a data matrix and to an image. After one-
time pixel substitution, the data matrix is dramatically changed into another randomly distributed data matrix (see Fig. 9(a))
and the image becomes a random-like image (see Fig. 9(b)). From Fig. 9(c), we can observe the distribution of the encrypted
image in Fig. 9(b), the numbers of pixels in each grayscale level are almost equal. Attackers have difficult to obtain informa-
tion of the original image using any statistic analysis method.

The proposed CMT-IEA can also be used for data encryption. The data sequence can be rearranged into 2D data matrices
with a fixed size of blocks, e.g. 512� 512 blocks. CMT-IEA is then used to encrypt the data block by block.
Pixel substitution. The first row shows the original data matrix and image while the second row shows their corresponding one-time pixel
tion results. (a) A 10� 10 data matrix and its substitution result; (b) the original and substituted images; and (c) the histograms of images in (b).



88 Z. Hua et al. / Information Sciences 297 (2015) 80–94
5. Simulation results and time complexity analysis

For a good image encryption algorithm, it should have the ability of transforming different types of plaintext images into
random-like ciphertext images. This section provides several simulation results of CMT-IEA and analyzes its time
complexity.

5.1. Simulation results

Fig. 10 shows the simulation results of using CMT-IEA to encrypt different types of images. The all-zero and all-one
images are two types of extreme cases of binary images where all pixels in images have same values. Their simulation results
demonstrate the excellent encryption performance of the proposed CMT-IEA because it is able to transform all-pixel-the-
same images into noise-like encrypted images in which all pixel values are randomly and uniformly distributed. As can
be seen in Fig. 10, the histograms of all plaintext images have specific patterns. But all ciphertext images are random-like
images and their histograms distribute uniformly. They do not contain any information of the plaintext images. This shows
that CMT-IEA has the good encryption performance for different types of images.

5.2. Time complexity analysis

CMT-IEA has a high encryption speed. By using the images from the USC-SIPI ‘Miscellaneous’ dataset under the MATLAB
implementation, the CMT-IEA’s encryption/decryption time for an image with a size of 256� 256 is 0:05312� 0:010043 s.
Therefore, the CMT-IEA’s encryption/decryption speed is about 9:413 Mb=s (Megabits per second). Table 1 compares the
encryption speeds of several image encryption algorithms for different sizes of images. The proposed CMT-IEA has the fastest
encryption speed. Thus it has the lowest time complexity.
Fig. 10. Simulation results of different kinds of images. The first and second rows show plaintext images and their histograms. The third and fourth rows
show the ciphertext images and their histograms. (a) All-zero image; (b) all-one image; (c) text image; (d) medical image; and (e) color image. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)



Table 1
Encryption speeds (second) of several image encryption algorithms for different sizes of images.

Image size 64� 64 128� 128 256� 256 512� 512 1024� 1024

Wu’s [31] 0.2503 1.3412 5.6544 27.1702 109.9320
Zhou’s [36] 0.0174 0.0549 0.1967 0.6547 3.2415
Wu’s [30] 0.0161 0.0582 0.2368 0.8587 3.5037
Liao’s [16] 0.0546 0.1415 0.5630 2.2597 9.0046
CMT-IEA 0.0042 0.0130 0.0538 0.2338 1.1494
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6. Security analysis

To demonstrate the security performance of CMT-IEA, different kinds of security analysis methods are being utilized in
this section. Most of test images are selected from the USC-SIPI ‘Miscellaneous’ image dataset.
6.1. Security key analysis

A good encryption algorithm should have a sufficiently large security key space and be extremely sensitive to its security
key changes. The proposed CMT-IEA has a security key with a length of 256 bits and thus its key space is 2256. This is large
enough to resist the brute-force attack according to the computation ability of current computers.

The key sensitivity can be described in two sides,

(1) The security key should be sensitive in the encryption process. Using two encryption keys with a tiny difference to
encrypt a plaintext image, the ciphertext images are totally different.

(2) The security key should be sensitive in the decryption process. Using two decryption keys with a tiny difference to
recover a ciphertext image, the recovered images are totally different.

Fig. 11 shows the key sensitivity analysis results. K2 and K3 are two different keys derived from K1 with one bit difference.
When a plaintext image (Fig. 11(a)) is encrypted using K1 and K2, the encryption results in Fig. 11(b) and (c) are totally dif-
ferent. Their difference is shown in Fig. 11(d). A ciphertext image (Fig. 11(b)) can be only completely decrypted by the correct
key as shown in Fig. 11(e). When the ciphertext image is decrypted by two keys with one bit difference from K1, the decryp-
tion results in Fig. 11(f) and (g) are also totally different and unrecognizable. Fig. 11(h) shows their difference. Therefore, the
proposed CMT-IEA is sensitive with its security keys in both the encryption and decryption processes.
Fig. 11. Key sensitivity analysis. (a) Plaintext image P; (b) ciphertext image C1 ¼ EncðP;K1Þ; (c) ciphertext image C2 ¼ EncðP;K2Þ; (d) difference of ciphertext
images: jC1 � C2j; (e) decrypted image D1 ¼ DecðC1;K1Þ; (f) decrypted image D2 ¼ DecðC1;K2Þ; (g) decrypted image D3 ¼ DecðC1;K3Þ; and (h) difference of
decrypted images: jD2 � D3j.
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6.2. Pixel correlation

An image generally has high data redundancy and thus its pixels have high correlations with their neighboring pixels. A
good image encryption algorithm should have the ability of breaking these correlations. Mathematically, data correlation is
defined by Eq. (10)
Fig. 12.
diagona
Corr ¼ E½ðX � lXÞðY � lY �
rXrY

ð10Þ
where X and Y are two data sequences. l is the mean value and r is the standard deviation. If two sequences X and Y have
high correlations, their correlation value is close to 1. Otherwise, it is close to 0.

In our test, we randomly select 2,000 pixels and their corresponding adjacent pixels along with the horizontal, vertical
and diagonal directions. Fig. 12 plots the distributions of the pixel sequence pairs, X and Y of the plaintext image and its
ciphertext image generated by the proposed CMT-IEA. As can be seen, for the plaintext image, most points are located on
or nearby the diagonal line of the coordinate system, while for the ciphtertext image, all points randomly distribute in
the entire data range. This means that adjacent pixels in the plaintext image have equal values or close to each other while
adjacent pixels in the ciphertext image dramatically change. Table 2 shows the quantitative results of the adjacent pixel cor-
relation test. The results of the plaintext image are close to 1 while the ciphertext image’s results are close to 0. These further
verify that the encrypted image by CMT-IEA has extremely low correlation.

6.3. Local Shannon entropy

Different from the histogram analysis that gives a straightforward result to show how uniformly pixels of an image dis-
tribute, the local Shannon entropy (LSE) [32] can provide a qualitative standard to evaluate the randomness of an image.

Firstly, randomly choosing k non-overlapping image blocks with TB pixels in the test image, and the test score can be got-
ten by calculating the mean Shannon entropy values of these image blocks by Eq. (11)
Hk;TBðSÞ ¼
Xk

i¼1

HðSiÞ
k

ð11Þ
where S1; S2; . . . ; Sk are k chosen image blocks. The image will pass the LSE test if Hk;TB ðSÞ falls into the interval of ðh�left ;h
�
rightÞ

defined by Eq. (12)
h�left ¼ lHðxÞ �Uða=2Þ�1rHðxÞ=
ffiffiffi
k
p

h�right ¼ lHðxÞ þUða=2Þ�1rHðxÞ=
ffiffiffi
k
p

(
ð12Þ
Distributions of adjacent pixel sequence pairs of (a) the plaintext image and its ciphertext image along with the (b) horizontal, (c) vertical, and (d)
l directions, respectively.



Table 2
Pixel correlations of the Lena image and its encrypted image.

Images Horizontal Vertical Diagonal

Original image 0.965935 0.936620 0.915342
Encrypted result 0.002383 �0.008576 0.040242
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where U�1ð�Þ is the inverse cumulative distribution function (CDF) of the standard Normal distribution Nð0;1Þ. lHðxÞ and rHðxÞ
are the mean and standard deviation of the LSE values of k non-overlapping image blocks in an ideally random image. The
Shannon entropy HðxÞ is defined by Eq. (13)
Table 3
The Loc
in bold

File

5.1.0
5.1.1
5.1.1
5.1.1
5.1.1
5.1.1
5.2.0
5.2.0
5.2.1
5.3.0
5.3.0
7.1.0
7.1.0
7.1.0
7.1.0
7.1.0
7.1.0
7.1.0
7.1.0
7.1.0
7.1.1
7.2.0
boat
elain
gray
num
ruler
testp

Mea
Pass

h�left=h�rig
HðXÞ ¼ �
Xn

i¼1

PrðxiÞlog2PrðxiÞ ð13Þ
where X represents a collection of pixels, xi is the i-th possible value in X and PrðxiÞ is the probability of xi.
In each test, test images are encrypted by different image encryption algorithms, and then measured by LSE. Several tests

are done and the best test results are reported as the experiment results. Table 3 shows the LSE results of the Wu’s algorithm
[31], Zhou’s algorithm [35], Wu’s algorithm [30], Liao’s algorithm [16] and the proposed CMT-IEA. As can be seen, 26 out of
28 images encrypted by CMT-IEA pass the LSE test. Its pass rate is much higher than those of other four encryption algo-
rithms. This means that the ciphertext images of the proposed CMT-IEA have good randomness.

6.4. Differential attack

The differential attack, also called the chosen-plaintext attack, is a well-known and effective method to break an
encrypted result. An encryption algorithm with a good diffusion property can resist the differential attack. The number of
pixel change rate (NPCR) and unified averaged changed intensity (UACI) can be used to evaluate the diffusion property of
an image encryption algorithm. Mathematically, the NPCR and UACI between two images C1 and C2 are defined as Eqs.
(14) and (15) [4].
al Shannon entropy test of the ciphertext images generated by different image encryption algorithms. a ¼ 0:001; k ¼ 30; TB ¼ 1936. (The results marked
have passed the test).

name Wu’s [31] Zhou’s [35] Wu’s [30] Liao’s [16] CMT-IEA

9 7.901985 7.903354 7.903764 7.904191 7.902127
0 7.902731 7.902443 7.901801 7.902371 7.903402
1 7.902446 7.902756 7.903306 7.900799 7.902687
2 7.902556 7.901526 7.904478 7.903374 7.901906
3 7.902688 7.904563 7.904657 7.904566 7.902825
4 7.903474 7.902954 7.902874 7.903111 7.902340
8 7.903953 7.902356 7.903218 7.901762 7.903327
9 7.902233 7.899853 7.903089 7.905854 7.901765
0 7.900714 7.902654 7.902077 7.902768 7.902748
1 7.902727 7.902647 7.902108 7.901040 7.901772
2 7.903182 7.910474 7.904169 7.900981 7.903328
1 7.902173 7.902634 7.901965 7.902145 7.901305
2 7.900879 7.901634 7.904970 7.902157 7.901578
3 7.902543 7.905423 7.891503 7.900645 7.903099
4 7.901126 7.902125 7.903399 7.904141 7.902607
5 7.903579 7.883653 7.901301 7.900027 7.905305
6 7.901930 7.902356 7.903367 7.901736 7.902695
7 7.903000 7.902364 7.899556 7.900802 7.902896
8 7.903197 7.904456 7.883531 7.900944 7.901632
9 7.902308 7.903012 7.903201 7.905658 7.903173
0 7.899542 7.901598 7.901542 7.893848 7.901524
1 7.902772 7.901989 7.904945 7.904525 7.902454
.512 7.901908 7.901879 7.903091 7.900712 7.903088
e.512 7.901122 7.902989 7.901859 7.902030 7.901720
21.512 7.900170 7.905107 7.901832 7.902149 7.902688
bers.512 7.903615 7.892351 7.902144 7.903579 7.901657
.512 7.903265 7.903001 7.901937 7.901428 7.903052
at.1k 7.902806 7.901681 7.903856 7.903343 7.902752

n 7.902308 7.901923 7.903764 7.902167 7.902488
rate 18/28 20/28 17/28 11/28 26/28

ht ¼ 7:901515698=7:903422936.
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Imag

Wu’s
Zhou
Wu’s
Liao
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NPCRðC1;C2Þ ¼
XM

i¼1

XN

j¼1

Dði; jÞ
L
� 100% ð14Þ

UACIðC1;C2Þ ¼
XM

i¼1

XN

j¼1

jC1ði; jÞ � C2ði; jÞj
T � L

� 100% ð15Þ

Dði; jÞ ¼
0; if C1ði; jÞ ¼ C2ði; jÞ
1; if C1ði; jÞ– C2ði; jÞ

�
ð16Þ
where L is the number of pixels and T is the largest allowed pixel value in the images.
Recently, new criteria for the NPCR and UACI tests have been developed [29]. For the NPCR test, an encryption algorithm

passes the NPCR test if its NPCR score is greater than a one-side hypothesis test under the significance level a defined by Eq.
(17)
N�a ¼
L�U�1ðaÞ

ffiffiffiffiffiffiffiffi
L=T

p
Lþ 1

ð17Þ
where U�1ð�Þ is the inverse CDF of the standard Normal distribution N(0,1).
For the UACI test, an encryption algorithm can pass the UACI test if its actual UACI score falls into the interval of (U��a ;U��a )

defined by Eq. (18).
U��a ¼ lU �U�1ða=2ÞrU
U�þa ¼ lU þU�1ða=2ÞrU

(
ð18Þ

lU ¼
Lþ 2

3Lþ 3
ð19Þ

rU ¼
ðLþ 2ÞðL2 þ 2Lþ 3Þ

18ðLþ 1Þ2LT
ð20Þ
Among all 28 test images in the USC-SIPI ‘Miscellaneous’ image dataset, there are 6 images with the size of 256� 256, 18
images with the size of 512� 512, and 4 images with the size of 1024� 1024. For each test image, we change one bit of a
randomly selected pixel to generate a new plaintext image, and then encrypt both plaintext images using five encryption
algorithms with the same security key. To provide a fair comparison, for Zhou’s [35] and Wu’s [31] algorithms, we directly
use their NPCR and UACI test scores presented in [35,31]; and for other algorithms, we implement them in MATLAB R2010a
and calculate the NPCR and UACI scores. Tables 4 and 5 show the NPCR and UACI results of five algorithms under the sig-
nificance level a ¼ 0:05. We can see that most images encrypted by the proposed CMT-IEA can pass the NPCR and UACI tests.
These prove that the encrypted images by CMT-IEA have a good diffusion property and can withstand the differential attack.

6.5. Robustness to noise and data loss

When a digital image is transmitted through networks or stored in the physical media, it is easily contaminated by noise
or may have the data loss. An image encryption algorithm should have the robustness to resist noise and the data loss. In the
proposed CMT-IEA, the encryption and decryption processes are asymmetric. In the encryption process, one pixel change in
the plaintext image will spread over all pixels in the ciphertext image. However, in the decryption procedure, the change of
one pixel in the ciphertext image can effect only few pixels in the recovered result. Thus, CMT-IEA has the ability to decrypt
the ciphertext image with noise or the data loss. Fig. 13 shows the robustness analysis results of CMT-IEA against noise and
the data loss. As can be seen, when the ciphertext images are with different types of noises or different sizes of the data loss,
the decryption process of CMT-IEA can still recover the original image. Although the recovered images are with some noises,
we can still recognize most of the image information.
CR results of different image encryption algorithms (significance level a ¼ 0:05).

e size 256� 256 512� 512 1024� 1024 Pass rate
P 99:5693 P 99:5893 P 99:5994

[31] 6/6 18/18 4/4 28/28
’s [35] 6/6 17/18 4/4 27/28
[30] 6/6 17/18 3/4 26/28

’s [16] 0/6 0/18 0/4 0/28
-IEA 6/6 18/18 4/4 28/28



Table 5
The UACI results of different image encryption algorithms (significance level a ¼ 0:05).

Image size 256� 256 512� 512 1024� 1024 Pass rate
33:2255=33:7016 33:3730=33:5541 33:4183=33:5088

Wu’s [31] 5/6 18/18 4/4 27/28
Zhou’s [35] 1/6 4/18 2/4 7/28
Wu’s [30] 6/6 15/18 4/4 25/28
Liao’s [16] 0/6 0/18 0/4 0/28
CMT-IEA 6/6 17/18 4/4 27/28

Fig. 13. Robustness analysis results of noise and the data loss. (a) The ciphertext image C and its decrypted image D ¼ DecðC;KÞ; (b) the ciphertext image C2

with 0.1% speckle noise and its decrypted result D2 ¼ DecðC2;KÞ; (c) the ciphertext image C3 with 2% salt&pepper noise and its decrypted result
D3 ¼ DecðC3;KÞ; (d) the ciphertext image C4 with 0.1526% data loss and its decrypted result D4 ¼ DecðC4;KÞ; and (e) the ciphertext image C5 with 1.3733%
data loss and its decrypted result D5 ¼ DecðC5;KÞ.
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7. Conclusion

This paper has proposed a new 2D chaotic map, 2D-SLMM. It was derived from the Sine and Logistic maps. Several assess-
ment methods, including the trajectory, Lyapunov exponent and Kolmogorov entropy, have been used to evaluate the cha-
otic performance of 2D-SLMM. Analysis and evaluation results have shown that 2D-SLMM has the wider chaotic range,
better ergodicity and hyperchaotic property, and that it has better chaotic performance than existing chaotic maps.

To demonstrate the performance of 2D-SLMM in security applications, a chaotic magic transform (CMT) has been intro-
duced. It can quickly shuffle neighboring pixels within an image. Using 2D-SLMM and CMT, we have proposed a new image
encryption algorithm. The experimental results have shown that the proposed algorithm can protect different types of
images with a high security level and low time complexity.
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